

JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA

KAKINADA-533003, Andhra Pradesh, India

R-16 Syllabus for EEE.JNTUK

II Year-I Semester	L	T	P	C
	4	0	0	3

ELECTRICAL MACHINES – I (R1621022)

Prerequisite Course: Electrical Circuit Analysis and Engineering Drawing.

Course Description and Objectives:

This is a basic course on rotating electrical machines. This course covers the topics related to principles, performance, applications and design considerations of dc machines and transformers.

Objectives:

- 1. Understand the unifying principles of electromagnetic energy conversion.
- 2. Understand the construction, principle of operation and performance of DC machines.
- 3. Learn the characteristics, performance, methods of speed control and testing methods of DC motors.
- 4. To predetermine the performance of single phase transformers with equivalent circuit models.
- 5. Understand the methods of testing of single-phase transformer.
- 6. Analyze the three phase transformers and achieve three phase to two phase conversion.

Course Outcomes:

Upon completion of the course, the student will be able to achieve the following outcomes.

Cos	Course Outcomes	Pos
1	Assimilate the concepts of electromechanical energy conversion.	4
2	Mitigate the ill-effects of armature reaction and improve commutation in dc machines.	4
3	Understand the torque production mechanism and control the speed of dc motors.	3
4	Analyze the performance of single phase transformers.	2
5	Predetermine regulation, losses and efficiency of single phase transformers.	2
6	Parallel transformers, control voltages with tap changing methods and achieve three-phase to two-phase transformation.	4

Syllabus:

UNIT-I:

Electromechanical Energy Conversion and introduction to DC machines

Principles of electromechanical energy conversion – singly excited and multi excited system – Calculation of force and torque using the concept of co-energy. Construction and principle of operation of DC machine – EMF equation for generator – Classification of DC machines based on excitation – OCC of DC shunt generator.

UNIT-II:

Performance of D.C. Machines

Torque and back- emf equations of dc motors— Armature reaction and commutation — characteristics of separately-excited, shunt, series and compound motors - losses and efficiency- applications of dc motors.

UNIT-III:

Starting, Speed Control and Testing of D.C. Machines

Necessity of starter – Starting by 3 point and 4 point starters – Speed control by armature voltage and field control – testing of DC machines - brake test, Swinburne's method – principle of regenerative or Hopkinson's method - retardation test -- separation of losses.

JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA

KAKINADA-533003, Andhra Pradesh, India

R-16 Syllabus for EEE.JNTUK

UNIT-IV:

Single-phase Transformers

Types and constructional details - principle of operation - emf equation - operation on no load and on load – lagging, leading and unity power factors loads - phasor diagrams of transformers – equivalent circuit – regulation – losses and efficiency – effect of variation of frequency and supply voltage on losses – All day efficiency.

UNIT-V

Single-phase Transformers Testing

Tests on single phase transformers – open circuit and short circuit tests – Sumpner's test – separation of losses – parallel operation with equal voltage ratios – auto transformer equivalent circuit – comparison with two winding transformers.

UNIT-VI

3-Phase Transformers

Polyphase connections - Y/Y, Y/ Δ , Δ /Y, Δ / Δ and open Δ -- Third harmonics in phase voltages - three winding transformers: determination of Zp, Zs and Zt -- transients in switching – off load and on load tap changers -- Scott connection.

TEXT BOOKS:

- 1 Electrical Machines P.S. Bhimbra, Khanna Publishers
- 2. Electric Machinery by A.E.Fitzgerald, Charles kingsley, Stephen D. Umans, TMH

REFERENCE BOOKS

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, McGrawHill Publications, 4th edition
- 2. Electrical Machines by R.K.Rajput, Lakshmi publications,5th edition.
- 3. Electrical Machinery by AbijithChakrabarthi and SudhiptaDebnath,McGraw Hill education 2015
- 4. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010
- 5. Electric Machines by MulukutlaS.Sarma&Mukeshk.Pathak, CENGAGE Learning.
- 6. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons